Early Gene Expression Profile in Retinal Ganglion Cell Layer After Optic Nerve Crush in Mice.

نویسندگان

  • Satoru Ueno
  • Azusa Yoneshige
  • Yoshiki Koriyama
  • Man Hagiyama
  • Yoshikazu Shimomura
  • Akihiko Ito
چکیده

Purpose Optic nerve crush (ONC) induces retinal ganglion cell (RGC) death, which causes vision loss in glaucoma. To investigate early events leading to apoptosis of RGCs, we performed gene expression analysis of injured retinas in the period before RGC loss. Methods The temporal changes of gene profiles at 0, 1, and 4 days after ONC were determined by DNA microarray. To verify the gene expression changes in RGCs, we enriched RGCs by laser-captured microdissection and performed real-time RT-PCR of 14 selected genes. In situ localization study was performed by immunohistochemistry. Results At 1 day and 4 days after ONC, 1423 and 2010 retinal genes were changed compared with 0 day, respectively; these genes were mainly related to apoptotic process, immune process, regulation of cell cycle, and ion transport. RT-PCR analysis revealed that expression levels of Activating transcription factor 3 (Atf3), Lipocalin 2 (Lcn2), and tumor necrosis factor receptor superfamily member 12a (Tnfrsf12a) were remarkably changed in RGC-enriched fraction within 4 days postcrush. Immunohistochemical analysis confirmed that all of these genes expressed highly in the ganglion cell layer of crushed retinas. Conclusions In response to ONC, the expression of apoptotic genes was stimulated soon after crush. Atf3, Lcn2, and Tnfrsf12a might be key molecules responsible for RGC loss in glaucoma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bilberry extract administration prevents retinal ganglion cell death in mice via the regulation of chaperone molecules under conditions of endoplasmic reticulum stress

PURPOSE To investigate the effect of bilberry extract anthocyanins on retinal ganglion cell (RGC) survival after optic nerve crush. Additionally, to determine details of the mechanism of the neuroprotective effect of bilberry extract anthocyanins and the involvement of endoplasmic reticulum stress suppression in the mouse retina. MATERIALS AND METHODS Anthocyanins in bilberry extract (100 mg/...

متن کامل

Neural Stem Cell-based Intraocular Administration of Pigment Epithelium-derived Factor Promotes Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Crush Injury in Rat: An Experimental Study

Background: Pigment epithelium-derived factor (PEDF) is regarded as a multifunctional protein possessing neurotrophic and neuroprotective properties. PEDF has a very short half-life, and it would require multiple injections to maintain a therapeutically relevant level without a delivery system. However, multiple injections are prone to cause local damage or infection. To overcome this, we chose...

متن کامل

Accelerated retinal ganglion cell death in mice deficient in the Sigma-1 receptor

PURPOSE The sigma-1 receptor (σR1), a ligand-operated chaperone, has been inferred to be neuroprotective in previous studies using σR1 ligands. The σR1 specificity of the protective function, however, has yet to be firmly established, due to the existence of non-σR1 targets of the ligands. Here, we used the σR1-knockout mouse (Sigmar1(-/-)) to demonstrate unambiguously the role of the σR1 in pr...

متن کامل

Expression change of PirB in mice retina after optic nerve injury.

The aim of this study was to observe the location of paired immunoglobulin-like receptor B (PirB) in the retina and to evaluate the expressive varieties of PirB in the retina of mice after optic nerve injury. In situ hybridization was used to observe the location of PirB mRNA in the retina of mice. Western blotting was used to analyze the levels of PirB protein in retina 7 days after optic nerv...

متن کامل

AAV2-Mediated Transduction of the Mouse Retina After Optic Nerve Injury

Purpose Gene therapy of retinal ganglion cells (RGCs) has promise as a powerful therapeutic for the rescue and regeneration of these cells after optic nerve damage. However, early after damage, RGCs undergo atrophic changes, including gene silencing. It is not known if these changes will deleteriously affect transduction and transgene expression, or if the therapeutic protein can influence reac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Investigative ophthalmology & visual science

دوره 59 1  شماره 

صفحات  -

تاریخ انتشار 2018